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In diseased organs, stress-activated signalling cascades alter chromatin,

thereby triggering maladaptive cell state transitions. Fibroblast activationis a
common stress response in tissues that worsens lung, liver, kidney and heart disease,
yet its mechanistic basis remains unclear*2. Pharmacological inhibition of
bromodomain and extra-terminal domain (BET) proteins alleviates cardiac
dysfunction®”, providing a tool to interrogate and modulate cardiac cell statesas a
potential therapeutic approach. Here we use single-cell epigenomic analyses of hearts
dynamically exposed to BET inhibitors to reveal areversible transcriptional switch
that underlies the activation of fibroblasts. Resident cardiac fibroblasts demonstrated
robust toggling between the quiescent and activated state in amanner directly
correlating with BET inhibitor exposure and cardiac function. Single-cell chromatin
accessibility revealed previously undescribed DNA elements, the accessibility of
which dynamically correlated with cardiac performance. Among the most dynamic
elements was an enhancer that regulated the transcription factor MEOX1, which was
specifically expressed in activated fibroblasts, occupied putative regulatory elements
of abroad fibrotic gene program and was required for TGFf3-induced fibroblast
activation. Selective CRISPR inhibition of the single most dynamic cis-element within
the enhancer blocked TGFB-induced Meox1 activation. We identify MEOX1 as a central

regulator of fibroblast activation associated with cardiac dysfunction and
demonstrate its upregulation after activation of human lung, liver and kidney
fibroblasts. The plasticity and specificity of BET-dependent regulation of MEOX1in
tissue fibroblasts provide previously unknown trans- and cis-targets for treating

fibrotic disease.

In many human diseases, dynamic changes in gene expression fuel
progressive organ dysfunction. As such, targeting gene transcription
has emerged as a new therapeutic strategy in a variety of chronic
diseases, including heart failure—a common and lethal condition that
affects 24 million people worldwide®. Among strategies to therapeu-
tically target the gene regulatory apparatus, small-molecule inhibi-
tors of BET proteins (BRD2, BRD3, BRD4 and BRDT) have emerged
as potent tools to reversibly interfere with enhancer-to-promoter
signalling in vivo®. BET proteins are a highly conserved family of
ubiquitously expressed acetyl-lysine reader proteins that co-activate

transcription, and systemic administration of BET bromodomain
inhibitors can ameliorate heart failure in mouse models®*. Because
the cell types most affected by BET inhibition in these models are
not known and systemic administration of potent BET bromodo-
main inhibitors is likely too broad to be therapeutically tractable
for chronic cardiovascular indications, we used single-cell tran-
scriptomic and epigenomic analyses of heart tissue in the setting
of intermittent BET bromodomaininhibitor exposure to reveal cell
states and cis- and trans-targets critical for disease pathogenesis
and therapeutic efficacy.
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Fig.1|Heartfailurereversibility with BET inhibition correlates with
myofibroblaststate. a, Left ventricle (LV) ejection fractionin the indicated
groups with treatment and withdrawal of JQ1 (50 mg kg™ per day).
***xp=1.46x107 for TACJQl versus TACJQl withdrawn at day 62; one-way
ANOVA with Tukey post hoc test. Numbers of mice were: sham (green), n=4;
TAC (red), n=6; TAC)Ql (blue), n=10; TACJQ1l withdrawn (orange), n=14.

b, scRNA-seqand scATAC-seq library generation workflow. ¢, d, Uniform
manifold approximation and projection (UMAP) plot of non-cardiomyocytes
(non-CMs) captured from heartsinb coloured by cluster (c) and sample
identity (d).n=35,551.e, UMAP plot of fibroblasts coloured by sample identity,
n=13,937.f Fibroblast Periostin (Postn) expression shown as UMAP feature and
violin plots. nUMI represents the number of unique molecular identifiers
associated with the Postn gene per cell. g, Normalized expressionscore of the
260 genesincreasedin TAC versus sham across fibroblast samples and
associated GO terms. Fisher’s exact test. h, Left ventricle fibrosisin TACJQ1
(n=4)and TACJQl withdrawn (n=8) using Picrosirius red staining and
quantification of the fibrosis. **P=0.0081, Mann-Whitney U-test with Tukey
posthoctest.Scalebars,250 pm. a, h, Dataare mean +s.e.m.

Transcriptional plasticity of fibroblasts

One month of treatment with a small-molecule BET bromodomain
inhibitor, JQ1°, that was started 18 days after the induction of heart
failure through left ventricle pressure overload using transverse aortic
constriction (TAC), significantly improved left ventricular systolic func-
tionin mice (Fig. 1a). Withdrawal of JQ1 for two weeks led to regression
of left ventricular systolic function, demonstrating the therapeutic
reversibility of BET inhibition. We isolated adult cardiomyocytes and
found that the effects of JQl on their transcriptome were modest com-
pared withthe previously published transcriptomic signature of whole
left ventricle tissue (less than 3% overlap)® (Extended Data Fig. 1a).
To determine the cardiac cell types that are affected by JQ1, we per-
formed single-cell RNA sequencing (scRNA-seq) of more than 35,000
non-cardiomyocytes from four experimental groups using the 10X
Genomics platform:sham, TAC vehicle-treated (TAC), TACJQl-treated
(TACJQI1), and TACJQl-treated followed by JQ1 withdrawal (TAC JQ1
withdrawn) (Fig. 1b). Unsupervised clustering of the scRNA-seq data
identified cardiac cell subpopulations, including fibroblasts, endothe-
lial cells, myeloid cells and epicardial cells (Fig. 1c and Extended Data
Fig.1b, c). Amongfibroblasts, TAC caused alarge shiftin cell state, and
JQltreatmentresulted in reversion to a state that closely approached

the shamstate (Fig. 1d). Withdrawal of JQ1 shifted the fibroblast popula-
tionback toa TAC-like stressed state (Fig.1d). Dynamic]Ql-dependent
transcriptomic shifts also occurredin the endothelial and myeloid cell
compartments, but cell stateselicited by JQ1 were less similar tosham
thanthoseelicited in fibroblasts (Fig.1d and Extended Data Fig.1d, e).
Subsetting the 13,937 individual fibroblast transcriptomes better
illustrated the response toJQlin the TAC state (Fig. 1e). Cardiac stress
is known to trigger the transition of resident fibroblasts into a con-
tractile and synthetic state called the myofibroblast™. Expression of
the myofibroblast-enriched gene Postn'™, together with many other
markers of fibroblast activation, was upregulated in TAC, was down-
regulated with JQl1 treatment and re-emerged upon JQ1 withdrawal
(Fig.1fand Extended DataFig.2a-c). We used acumulative score to plot
expression of 260 fibroblast-associated genes that were upregulated
by stress across all samples and found this gene set was highly sensitive
toJQl exposure (Fig. 1g) and enriched for extracellular matrix (ECM),
TGFp signalling and proliferative gene ontology (GO) terms (Fig. 1g).
Differential expression analysis between TAC and TACJQlor TACJQland
TACJQ1withdrawn among these 260 genes demonstrated that 81% were
significantly downregulated byJQ1, and 38% of those were upregulated
again whenJQlwas withdrawn, highlighting the transcriptional revers-
ibility of the stress-induced signature with BET inhibition (Extended
DataFig.2d). Consistent with transcriptomic data,JQ1 withdrawal led
to increased left ventricle fibrosis (Fig. 1h), which may reflect shifts
in fibroblast state that influence or are affected by other cell types
through heterotypicinteractions or paracrine factors.JQlexposure also
restored expression of afraction of downregulated genes between sham
and TACin fibroblasts (Extended Data Fig. 2e, f), which suggests that
JQl hasadual effect by suppressing stress-induced gene programs and
restoring basal gene programs. Among the nine fibroblast subclusters,
JQl-treated fibroblasts (cluster 1) were closest to sham (clusters 0, 4)
by hierarchical analysis (Extended Data Fig. 3a-c). Although most of
theJQl-withdrawn cells clustered together with TAC cells in the three
subclusters associated with the greatest ECM upregulation (clusters
2,3,5) (Extended Data Fig. 3d-f), some clustered with sham, which
suggests that they achieved stable restoration of gene expression, at
least for two weeks after drug withdrawal (Extended Data Fig. 3a-c).

Enhancers during fibroblast activation

To analyse the changes in chromatin accessibility and enhancer acti-
vation modulated by JQ1in non-cardiomyocytes during heart failure
pathogenesis, we integrated scRNA-seq data with data from single-cell
assay for transposase-accessible chromatin sequencing (scATAC-seq)
fromthe same hearts"" (Fig. 1b and Extended Data Fig. 4a). We identi-
fied 490,020 accessible sites distributed among 31,766 individual cells
and assigned cellularidentity based on chromatin signature (Extended
Data Fig. 4b, c). To focus on distal regulatory elements, we excluded
accessible sites in promoters and gene bodies and defined a catalogue
of fibroblast-, myeloid-cell- or endothelial-cell-enriched distal elements
that were used for all subsequent analyses (Extended Data Fig. 4d).
Fibroblasts had increased chromatin accessibility after TAC that was
reversibly attenuated withJQl1 treatment, afeature that was less evident
inmyeloid and endothelial cells (Extended Data Fig. 5a). To dissect the
dynamic and reversible changes in chromatin activation, we defined
openand closed distal elements across the four samples and excluded
regions that were constitutively open across all conditions (Extended
DataFig.5b). We discovered a cluster of highly dynamic distal elements
in fibroblasts that were closed in sham, opened in TAC, closed by JQ1,
and robustly re-accessible after JQ1 withdrawal (cluster 2) (Extended
Data Fig. 5b). GO analysis showed that these regions were proximal
to genes controlling heart growth and ECM organization—two hall-
mark features of adverse cardiac remodelling and fibrosis. We also
identified a large cluster of regions in fibroblasts that opened from
sham to TAC that were insensitive toJQ1, highlighting a signature of
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stress-responsive chromatin activation thatis BET-independent (cluster
9) (Extended Data Fig. 5b). In fibroblasts, transcription-factor binding
motifs for CEBPB,JUN and MEOX1 were enriched in accessible regions
in the sham-to-TAC transition, with subsequent loss of enrichment
upon BET inhibition that was then re-acquired with JQ1 withdrawal
(Extended Data Fig. 5c).

Toidentify functionally relevant enhancers among the scATAC-seq
peaks, we performed precision nuclear run-on sequencing (PRO-seq)"
on cultured cardiac fibroblasts in vitro to map genome-wide nascent
transcription of RNA polymerase II, which robustly indicates enhancer
activity™and gene transcription. As PRO-seq requires large quantities of
cells, we generated animmortalized cellline derived from primary adult
mouse cardiac fibroblasts and treated the cells with TGF[3, a canoni-
cal stimulus for eliciting fibroblast activation in vitro (Extended Data
Fig. 6a).Induction of Postn, Ctgf (also known as Ccn2) and several other
markers validated that this cellline transitioned to the activated state
after exposure to TGF[ (Extended Data Fig. 6b). PRO-seqidentified aset
of distal and gene elements that was significantly more transcribed after
TGFp stimulation and was associated with fibroblast activation (Fig. 2a
and Extended Data Fig. 6¢-f). Using our scATAC-seq data, we identified
distal elements that were either opening or closing between shamand
TACinvivo, and assessed the PRO-seq signal in the cardiac fibroblasts
at these same regions. We found that TGF3-stimulated transcription
at distal elements in vitro correlated with regions of chromatin that
openinfibroblastsin vivo during heart failure pathogenesis, whereas
nascent transcription at chromatinregions that closed in vivo was not
notably altered (Fig. 2b and Extended Data Fig. 6g for protein-coding
genes). Visualization of the Postn locus illustrates this dynamic regu-
lation (Fig. 2c), in which there is chromatin opening in vivo after TAC
with dynamic sensitivity to JQl exposure. A scATAC-seq co-accessibility
analysis between the Postn promoter and a TGFf3-dependent region
within this area (peak 10/11) showed low co-accessibility in the sham
state, a robust increase with TAC, and modulation with JQ1 exposure
(Fig.2cand Extended DataFig. 6h). We used CRISPR interference (CRIS-
PRi) comprising a catalytically inactive Cas9 (dCas9) fused to the KRAB
repressor protein® tospecifically inhibitindividual regulatory elements
within this large Postn enhancer (Fig. 2d and Extended Data Fig. 6i, j).
The peak10/11 cis-element was uniquely required for Postn transactiva-
tionupon TGFf3 stimulation (Fig. 2d). CRISPRi-mediated deposition of
the repressive histone mark H3K9me3 was specific to the peak 10/11
region and did not affect the Postn promoter (Extended Data Fig. 6k).

Chromatinstate and cardiac function

Toreveal distal elementsinvolved in progressionand reversal of heart
failure, we assembled a catalogue of cell-population-enriched large
enhancers (also known as super-enhancers)' using scATAC-seq data
inthe diseased heart (TAC) (Extended DataFig. 7a) and correlated the
degree of accessibility of these enhancersin fibroblasts, myeloid cells
and endothelial cells with left ventricle ejection fractionin each treat-
ment setting described. This correlation analysis between ameasure of
enhancer chromatinaccessibility and a physiological trait (left ventricle
ejection fraction) is summarized schematically in Fig. 2e. Enhancer ele-
ments were defined as having anegative correlation if their accessibility
was anti-correlated with heart function (that is, opening from sham to
TAC) or a positive correlation if closing from sham to TAC. Of the 470
fibroblast super-enhancers identified, 48 showed a strong negative
correlation whereas 22 showed strong positive correlation (volcano
plotinFig.2f and Extended Data Fig. 7b, c). To determine whether the
super-enhancers responded similarly in the TGFB-responsive fibro-
blast cell line, we performed chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) with an antibody against H3K27ac,
an active enhancer mark, with or without TGFB-treatment (Extended
DataFig. 7d). Enhancersidentified in vivo characterized by anegative
correlation with heart function showed increased H3K27ac deposition
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Fig.2|Reversibility of chromatinstates in fibroblasts reveals DNA
elements that correlate with heartfunction. a, PRO-seq heat map of
differentially transcribed distal regions (Wald test with Benjamini-Hochberg
correction) in unstimulated versus TGFB-treated fibroblasts and associated
top GO terms (binomial test). The mean signal for two replicatesis shown.
Pgclaisalsoknown as Ppargcla.b,PRO-seq coveragein unstimulated and
TGFpB-treated fibroblastsin vitro of scATAC-seq peaks opening (2,553) or
closing (567) between sham and TAC in fibroblastsin vivo. ¢, scATAC-seq from
fibroblastsinvivoand PRO-seqat the Postnlocus. A highly transcribed region
(peak10/11) is highlighted with co-accessibility between the Postn promoter
and peak 10/11. The numbers over the tracks indicate ranges of normalized tag
densities.d, Postn expression by qPCR in unstimulated or TGFf3-treated
fibroblastsin CRISPRi lines targeting peak 8 (***P=0.0001), peak 10/11 or
peak19 (***P=0.0001). NS, not significant; one-way ANOVA followed by Tukey
posthoctest. Values normalized to the CRISPRi control line under
unstimulated conditions (shownin Extended DataFig. 6i). Dataare

mean ts.e.m. e, Schematic of the correlation analysis between left ventricle
ejection fraction and chromatin accessibility highlighting anegative or
positive correlation. f, Volcano plot showing correlation coefficients (from
analysis in Fig. 2e) and corresponding Pvalues of 470 super-enhancersin
fibroblasts. See Supplementary Methods for details.

after TGF treatment, whereas those with a positive correlation showed
decreased H3K27ac (Extended Data Fig. 7e).

One of the most negatively correlated elements in fibroblasts in vivo
was a large enhancer downstream of MeoxI (Fig. 2f and Extended
Data Fig. 8a), ahomeodomain-containing transcription factor that is
required for sclerotome development”. Meox1 was highly upregulated
in myofibroblasts after TAC*® (Fig. 3a and Extended Data Fig. 8b). Q1
exposure abolished MeoxI expression, whereasJQ1 withdrawal led to
itsrobust re-induction (Fig. 3a).
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Stress-induced cis-regulation of Meox1

The enhancer downstream of MeoxI was extremely sensitive to stress
and JQ1l exposure in fibroblasts, but not in myeloid and endothelial
cells (Fig.3b and Extended DataFig. 8c). From sham to TAC conditions,
10 peaks became accessible in fibroblasts; many of these closed with
JQltreatment back to ashamlevel, and re-opened whenJQ1 was with-
drawn (Fig. 3b and Extended Data Fig. 8c-e). Publicly available BRD4
and H3K27ac ChlP-seq data from adult mouse left ventricle tissue
corroborated these active enhancer marks at the MeoxI locus, suggest-
ing that this enhancer may regulate MeoxI (Fig. 3b). Consistent with
BRD4 regulation of this enhancer, activation of MeoxI mRNA expres-
sioninduced by TGFp in cultured fibroblasts' was suppressed by JQ1
(Extended Data Fig. 9a), and, among BET proteins, was most sensitive
to BRD4 dosage (Extended Data Fig. 9b, c).

Among the scATAC-seq peaks in this locus that showed increased
accessibility with TAC in vivo, PRO-seq identified a region located
62-65 kilobases (kb) downstream of the MeoxI promoter (peak 9/10)
that featured a marked increase in nascent transcription after TGFf3
stimulation (Fig. 3b). This DNA element showed more TGF3-stimulated
transcription thanthe MeoxI gene body itself and was one of the most
differentially transcribed regions across the whole genomeinresponse
to TGF( (Fig.3band Extended Data Fig.10a), suggesting a functionally
relevant enhancer™. The MeoxI promoter and the peak 9/10 region
showed low co-accessibility in the sham state, a strong increase in
co-accessibility with TAC, and modulation of co-accessibility with
BET inhibition (Fig. 3b and Extended Data Fig. 10b). Chromosome
conformation capture analysis of this locus in fibroblasts revealed a
robustincrease in contact between the peak 9/10 region and the MeoxI
promoter in response to TGF[3 (Extended Data Fig. 10c, d). CRISPRi
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by qPCRinunstimulated or TGFB-treated fibroblasts upon CRISPRi targeting
peak 5 (***P=1.82x107'%), peak 9/10 or peak 13 (****P=1.64 x10°%). Values
normalized to CRISPRi control line under unstimulated conditions (Extended
DataFig.10e).d, MeoxI expressionby qPCR in unstimulated or TGF3 conditions
inwild-type (WT) (***P=1.99 x10°®) or peak-9/10-deleted (KO) cells

(***P=1.99 x107%). e, Expression of peak 9/10 enhancer RNA (eRNA) (top,
***4p=176 x10"*and ****P=5.29 x10"%) and MeoxI (bottom, ****P=9.80 x10~°
and***P=1.29 x107%) expression by qPCR in unstimulated and TGFp conditions
with control or Smad3-targeting siRNAs. c-e, Dataare mean +s.e.m. One-way
ANOVA followed by Tukey post hoc test.

revealed that the peak 9/10 cis-element was specifically required for
MeoxI transactivation upon TGF[3 stimulation, while other accessible
regionsidentified in vivowere not (Fig. 3cand Extended DataFig.10e, f).
Guide RNAs targeting peak 9/10 led to the localized deposition of
the repressive H3K9me3 mark in the peak 9/10 element but not on
the Meox1 promoter, supporting specificity of peak 9/10 silencing
(Extended Data Fig.10g). CRISPR-Cas9-based excision revealed that
deletion of peak 9/10 abolished MeoxI transactivation upon TGF3
stimulation (Fig. 3d and Extended Data Fig. 10h). Multiple motifs of
SMAD?2 and SMAD?3, transcriptional mediators of TGF( signalling,
were present in both peak 9/10 and the Meox1 promoter (Extended
Data Fig.10i), and knockdown of Smad3, but not Smad2, led to a sig-
nificant reduction in peak 9/10 transcription and MeoxI expression
(Fig. 3e and Extended Data Fig. 10j,k). Thus, peak 9/10 represents a
stress-activated enhancer for MeoxI during the activated myofibro-
blast transition.

MEOX1regulates pro-fibrotic function

Meox1 knockdown reduced the formation of a-smooth muscle
(aSMA)-positive stress fibres and expression of Acta2 (which encodes
«SMA) in TGFB-treated fibroblasts (Extended Data Fig.11a-d). Moreo-
ver, MeoxI depletion attenuated TGF3-stimulated collagen-gel contrac-
tionand EdUincorporation, two functional hallmarks of myofibroblasts
in disease pathogenesis (Fig. 4a and Extended Data Fig. 11e). MEOX1
occupancy by ChIP-seq at active chromatin (marked by H3K27ac)
revealed increased recruitment of MEOX1 at stress-responsive distal
elements after TGFf3 treatment (Fig. 4b and Extended Data Fig. 11f-h).
Upon Meox1 knockdown, transcription of the stress-responsive dis-
tal elements bound by MEOX1 in TGFf-treated fibroblasts—detected
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a, Images and quantification (n=4 per condition) of fibroblasts seeded on
compressible collagen gel matrices inunstimulated or TGFf conditions witha
control or aMeoxI-targeting siRNA. Two-way ANOVA followed by Bonferroni
correction for TGFB and control siRNA versus TGF3 and MeoxI siRNA.
**P=0.0082 (24 h),**P=0.0015 (48 h) and ****P=2.21x10° (72 h). b, MEOX1
ChIP-seq coverage inunstimulated and TGFB-treated cells at distal elements
identified by high enrichment of H3K27ac in unstimulated (left, 2,194 regions)
or TGFB-treated (right, 2,898 regions) cells. ¢, Left, PRO-seq coverage under
indicated conditions at distal elements with high H3K27acenrichmentin TGF3
versus unstimulated bound by MEOX1 (427 regions) and associated top GO
terms (binomial test) (right). d, PRO-seq coverage of differentially transcribed
genes (Wald test with Benjamini-Hochberg correction) in TGFf3-treated

by PRO-seq—was decreased (Fig. 4c and Extended Data Fig. 11i-k).
These distal chromatin loci were near genes linked to tissue mor-
phogenesis, regulation of growth and positive regulation of cell
migration and motility (Fig. 4c). Correspondingly, MeoxI knockdown
in the setting of TGFf stimulation resulted in downregulation of
more than 400 genes compared to TGF(3 alone, whereas 863 were
more highly transcribed (Fig. 4d and Extended Data Fig. 111-0). GO
analysis of the MeoxI-dependent genes again revealed enrichment
of processes associated with fibroblast activation, such as regula-
tion of cell migration, motility and proliferation (Fig. 4d). Among
these genes were classic markers of cardiac myofibroblast activa-
tion, including Ctgfand Postn, which showed MEOX1 enrichment at
their promoters and proximal regulatory elements (including the
Postn peak 10/11 enhancer described in Fig. 2¢, d). These elements
alsoshowed decreased transcription after MeoxI depletion (Fig. 4e
and Extended Data Fig. 11p). Thus, MEOX1 functions as an essential
transcriptional mediator of the fibroblast-to-myofibroblast switch
associated with fibrotic disease.
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fibroblasts with control or Meox1siRNA and associated top GO terms (Fisher
exacttest). Mean signal for 2 replicates shown. e. Coverage of indicated ChIP-
seqor PRO-seqwith or without TGFf in cardiac fibroblasts at the Ctgflocus
with control or Meox1siRNA. The numbers over the tracks indicate ranges of
normalized tag densities. f, UMAP plot of adult human cardiac fibroblasts (FB)
colouredby cluster identity (left) and POSTN or MEOX1 expression (right)®.

g, MEOX1 expression by qPCRin primary human fibroblasts from the indicated
tissues. One-way ANOVA followed by Tukey post hoc test for unstimulated
versus TGFB (lung, ****P=1.29 x107%; liver, ***P=1.49 x10°%; kidney,

“xp=5 83 x107°) and TGFB versus TGFB +JQl (lung, ****P=3.91x107%; lung,
***p=1,06x107% kidney, ****P=4.54 x 10 kidney). h, Model of stress-induced
activation of fibroblasts regulated by MeoxI.BETi, BET inhibition; HF, heart
failure.a, g, Dataare mean*s.e.m.

MEOX1is upregulated in human fibrosis

Single-cell data from the human adult heart*® showed that MEOX1 was
expressed in activated fibroblasts and—together with POSTN—was
oneofthetop genes determining the cluster of activated fibroblasts
(Fig.4fand Extended Data Fig.12a). An atlas of chromatin accessibil-
ity from the human fetal heart® indicated that the syntenic region
of peak 9/10 was characterized by the strongest signal of accessible
chromatininthe MEOXI distal elementin fibroblasts (Extended Data
Fig.12b). Similar to our findings in the heart, MEOXI expression was
induced by TGF3 and suppressed by JQl in fibroblasts from lung,
liver and kidney in humans—three other organs that often develop
pathological fibrosis in the setting of chronic organ dysfunction
(Fig.4g). Furthermore, MEOX1 expression was significantly upregu-
lated in heart tissue from patients with cardiomyopathy and in lung
tissue from patients with idiopathic pulmonary fibrosis, two human
diseases that prominently feature pathological fibrosis?? (Extended
Data Fig.12c, d).



Conclusion

This study uncovers an essential MEOX1-dependent transcriptional
switch that governs cellular plasticity in the fibroblast compartment
during the pathogenesis of chronic heart failure and demonstrates that
this maladaptive cell state transition is a druggable feature of disease
(Fig. 4h). Our work highlights that single-cell-based investigation of
cell states in a diseased tissue, coupled with temporally controlled
perturbation of transcription signalling, can be used to discover the
plasticity of cell states and molecular mechanisms that are critical
for the progression and reversal of fibrotic diseases. In contrast to
the broad effects of systemic BET inhibition, mechanistic refinement
convergingon cell-type-specific enhancers in the context of acomplex
tissue offers the opportunity to develop therapeutic approaches that
aretailored totargeted gene regulationin defined cell compartments.
These findings may inform new therapeutic strategies for awide variety
of chronic disorders that feature maladaptive remodelling of cell state
and tissue architecture.
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Extended DataFig. 5|scATAC-seq defines chromatin accessibility in heart
failure duringintermittent exposure to BET bromodomaininhibition.

a, Chromatin accessibility at distal elements between samplesin fibroblasts,
myeloid cells and endothelial cells. Box plots show the 25th, 50th and 75th
percentiles, with whiskers extending to the furthest value no further than1.5x
theinterquartile range. The 10% most extreme points were trimmed for better
visualization (these never included points within the whiskers of the box plot).
Numbers above the box plotsindicate significant Pvalues, statistical
significance (two-sided Wilcoxon rank-sum test) is shown for: sham versus TAC;
shamversus TACJQI; TAC versus TACJQl and TACJQ1 versus TACJQ1

withdrawn. b, Dynamicaccessibility (meanand 95% confidence interval) of
distalelementsin fibroblasts (n=4,394), myeloid cells (n=1,325) and
endothelial cells (n=1,626) clustered by trend across samples. Accessibility
trend and top GO terms (binomial test) associated with clusters 2,6,9,11,12and
14 are shown for fibroblasts. For myeloid and endothelial cells, only the top GO
terms (binomial test) associated with cluster 2 areshown. ¢, Enrichment scores
for transcription-factor motif accessibility in distal elements between samples
for the 10 most expressed transcription factorsin TACin fibroblasts, myeloid
cellsand endothelial cells. TF, transcription factor.
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Extended DataFig. 6 | Nascent transcriptionin TGFB-treated cells
identifies stress-responsive distal and gene elements. a, Schematic of the
isolationand immortalization of mouse adult cardiac fibroblasts. b, Expression
by qPCR of canonical markers of activated fibroblasts in unstimulated (Unstim)
and TGFpB-treated cells. Unpaired, two-tailed Student’s t-test. ¢, Pearson
correlation of the two independent biological replicates of PRO-seqin
unstimulated and TGFB-treated cells. d,e, Heat map of PRO-seq coverage of
differentially transcribed distal regions (d) and protein-coding genes

(e, right) between unstimulated and TGFB-treated fibroblasts. Wald test with
Benjamini-Hochberg correction. Signal for replicates1and 2 is shown. e, Right,
top associated GO terms (Fisher’s exact test). f, PRO-seq tag density (+5kbgene
body) inunstimulated and TGFB-treated cells in the genes differentially
transcribedin unstimulated versus TGFB-treated. Top, genes upregulated after
TGFpBtreatment. Bottom, genes downregulated after TGFf3 treatment. g, PRO-
seqtagdensity (+5kb gene body) in unstimulated and TGFB-treated cellsin the
setof genesupregulated (left,n=260) or downregulated (right,n=194) in

TAC versus shamin fibroblastsin vivo. h, Co-accessibility (CoAc) change in
fibroblasts of Postn peak10/11 element with the promoters of genes within1Mb

ofthe peak.Changein co-accessibility with the Postn promoter is highlighted
inred.n=27geneswithin1Mb. Box plots show the 25th, 50th and 75th
percentiles, with whiskers extending to the furthest value no further than1.5x
theinterquartile range. i, Postn expression measured by qPCR in unstimulated
and TGFpB-treated in the CRISPRi control line. Unpaired, two-tailed ¢-test.

j, Postnpeak 8,10/11and 19 eRNA expression measured by qPCR in
unstimulated and TGFB-treated fibroblastsin a CRISPRi controlline and lines
targeting peak 8, peak 10/11 or peak 19. Values are normalized to the CRISPRi
controllinein the unstimulated condition. One-way ANOVA followed by Sidak’s
correction, statistical significance is shown between the unstimulated samples
and TGFpB-treated samples. k, ChIP-qPCR datashowing enrichment over
chromatininput of H3K9me3in control and Postn peak 10/11 CRISPRilinesin
the unstimulated (left) and TGFB-treated (right) condition. Regions amplifying
peak10, peak11and Postn promoters are shown. One-way ANOVA followed by
Sidak’s correction, statistical significance is shown between control and Postn
peak10/11CRISPRilines. b, i-k, Numbers above histograms show significant
Pvalues.Dataaremeanz+s.e.m.
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Extended DataFig. 8| Dynamic changes inchromatinaccessibility at the
Meox1super-enhancer.a, Comparison of left ventricle ejection fraction with
chromatin accessibility at the MeoxI super-enhancer in fibroblasts, myeloid
cellsand endothelial cells. b, UMAP plot of Meox1 expressioninall non-
cardiomyocytes (n=35,551). ¢, Chromatin accessibility at the MeoxI super-
enhancer betweensamplesinfibroblasts, myeloid cells and endothelial cells.
Box plots show the 25th, 50th and 75th percentiles, with whiskers extending to
the furthest value no further than1.5x the interquartile range. Sample sizes
(fromlefttoright foreachcell type): fibroblasts (n=676,979,1,906,1,654),

myeloid cells (n=631,1,080,1,021,712), endothelial cells (n=731,1,666,1,030,
851). Numbers above box plots show significant Pvalues, statistical
significance (two-sided Wilcoxon rank-sum test) is shown for: sham versus TAC,
shamversus TACJQl, TAC versus TACJQl and TACJQ1 versus TACJQ1
withdrawn. d, scATAC-seq average signal across cells in fibroblast samples at
the MeoxI super-enhancer identifies multiple dynamic peaks in heart failure
with pulsatile exposure to BET inhibition. e, Chromatin accessibility trend
betweensamples (mean and 95% confidenceinterval) inallidentified Meox1
super-enhancer peaks.
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Extended DataFig.9|Brd4-dependent regulation of Meox1 expression.

a, Meoxl1 expression measured by qPCR in unstimulated and TGFB-treated
fibroblasts, treated with or without)Q1. b, Expression measured by qPCR of
individual BET genesinunstimulated or TGFf3-treated fibroblasts treated with
siRNA targeting control (siCtrl), Brd2 (siBrd2), Brd3 (siBrd3) or Brd4 (siBrd4).
Statistical significance is shown between unstimulated samples and

TGFpB-treated samples. ¢, MeoxI expression measured by qPCRin unstimulated
or TGFP-treated fibroblasts treated with siRNA targeting control, Brd2, Brd3 or
Brd4. Statistical significance is shown between the TGF and control siRNA
sampleand the other TGFB-treated samples. a-c, Allanalysed samples were
biological replicates. Numbers above graphs show significant Pvalues
(one-way ANOVA followed by Tukey post hoc test). Dataare mean+s.e.m.
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Extended DataFig.10|The peak 9/10 Meox1 enhancer is strongly
transcribed after TGFf stimulation. a, Volcano plot showing the log,[FC] of
the PRO-seqsignal of allidentified distal scATAC-seq peaksin fibroblasts
(n=9,211) between unstimulated and TGFf3-treated fibroblasts. Meox1 peaks 9
(red) and 10 (orange) are highlighted. b, Co-accessibility change in fibroblasts
of Meox1 peak 9/10 element with the promoters of genes within1Mb of the
peak. Changein co-accessibility with the MeoxI promoter is highlighted inred.
n=115geneswithin1Mb. Box plots show the 25th, 50th and 75th percentiles,
with whiskers extending to the furthest value no further than1.5x the
interquartilerange. ¢, d, Chromosome conformation capture (4C) using the
MeoxIpeak 9/10 region (c) or MeoxI promoter (d) as anchor point.4C coverage
inunstimulated and TGFpB-treated fibroblasts are shownina922-kb (top) and
328-kb (bottom) genomicregions. Thelast track represents the called TGFp-
induced loops with the anchor point (coloured in purple). e, MeoxI expression
measured by qPCRinunstimulated and TGFB-treated fibroblastsin the
CRISPRi controlline. Unpaired, two-tailed t-test. f, MeoxI peak 5,9/10 and 13
eRNA expressionmeasured by qPCRin unstimulated and TGFf-treated
fibroblastsin a CRISPRi controlline and lines targeting peak 5, peak 9/10 or
peak13.Values are normalized to the CRISPRi control linein the unstimulated
condition. One-way ANOVA followed by Sidak’s correction, statistical

significanceis shownbetween unstimulated samples and TGFB-treated
samples. g, ChIP-qPCR datashowing enrichment over chromatin input of
H3K9me3in control and MeoxI peak 9/10 CRISPRi lines in the unstimulated
(left) and TGFB-treated (right) conditions. Regions amplifying peak 9, peak 10
and MeoxI promoters are shown. One-way ANOVA followed by Sidak’s
correction, statistical significance is shown between CRISPRi controland
targeted lines. h, Dropletdigital (dd)PCR amplifying awild-type or mutated
region of MeoxI peak 9/10 DNA. Parental fibroblast cell line, wild type (clone
20, isogenic control exposed to CRISPR Cas9 and gRNAs) and peak 9/10
knockout (KO) (clone 16) cell lines are shown. i, Schematic showing the Meox1
locus with the scATAC-seq average signal across fibroblasts in TAC. SMAD2/3
motifs (Jaspar, MA1622.1) in the peak 9/10 region and in the MeoxI promoter
(x1kbfromthetranscriptionstartsite (TSS)) are highlighted. j. Expression
measured by qPCR of Smad2 (left) and Smad3 (right) in unstimulated or TGF-
treated fibroblasts with siRNA targeting control and Smad2 (left) or Smad3
(right). One-way ANOVA followed by Tukey post hoc test. k, MeoxI expression
measured by qPCR in unstimulated or TGFf-treated fibroblasts with siRNA
targetingeither control or Smad2. One-way ANOVA followed by Tukey post hoc
test.e-g,j, k, Numbers above histograms show significant Pvalues. Dataare
meanzts.e.m.
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Extended DataFig.11|See next page for caption.
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Extended DataFig.11| MEOX1is aregulator of fibroblast activation.

a, b, Meox1 expression measured by qPCR in mouse primary cardiac fibroblasts
(a) and immortalized cardiac fibroblasts (b) in the unstimulated condition, or
after treatment with TGF and control siRNA or TGFf and MeoxI siRNA. One-
way ANOVA followed by Tukey post hoc test. ¢, Left,immunofluorescence
staining of asSMA in unstimulated and TGFB-treated cells treated with a control
or aMeoxI-targeting siRNA. Nuclei are marked by Hoechst. Scale bars, 100 pm.
Right, quantification of tSMA staining (two independent experiments). The
fold changeinintensity is normalized to the cellnumber. One-way ANOVA
followed by Tukey post hoctest.d, Expression of Acta2 (whichencodes aSMA)
measured by qPCR in the unstimulated condition, or after treatment with TGF3
and control siRNA or TGF3 and MeoxI siRNA. One-way ANOVA followed by
Tukey posthoctest. e, Left, representative images of EdU incorporationin the
unstimulated condition, or after treatment with TGF and control siRNA or
TGFpB and MeoxI siRNA. DAPI (blue), EdU (red) and CellMask (green). Scale bars,
200 pm. Right, quantification (two independent experiments). One-way
ANOVA followed by Tukey post hoc test. f, MeoxI expression measured by qPCR
inwild-type and MeoxI overexpression (o/e) mouse immortalized cardiac
fibroblasts. Unpaired, two-tailed t-test. g, Pearson correlation of the three
replicates of MEOX1anti-haemagglutinin (HA) ChIP-seqin unstimulated and
TGFpB-treated cells. h, MEOX1anti-HA ChIP-seq coverageinall protein-coding
genes (x2kbgenebody) inunstimulated and TGFf-treated fibroblasts.

i, Pearsoncorrelation of the two independent biological replicates of PRO-seq
for TGFP and control siRNA or TGFp and MeoxI siRNA treatments. j, PRO-seq
coverage in the unstimulated condition, and after treatment with TGFB and
control siRNA or TGF3 and Meox1 siRNA at the distal elements defined as more

transcribed in TGFf3 versus unstimulated (2,101 sites) (see Fig.2a) thatare
eitherbound by MEOX1 (496 regions, top) or not (1,605 regions, bottom).

k, PRO-seq coveragein the unstimulated condition, or after treatment with
TGFp and control siRNA or TGF3 and MeoxI siRNA at the distal elements with
high H3K27ac enrichmentin the unstimulated condition bound by MEOX1
(379regions).l, PRO-seq coverage of differentially transcribed genes (Wald
test followed by Benjamini-Hochberg correction) in TGFB-treated fibroblasts
with control or Meox1siRNA. Signal for replicates1and 2 isshown.m, PRO-seq
tag density (+5kb genebody) after treatment with TGFp and control siRNA or
TGFB and MeoxI siRNAingenesupregulated in TGFf3 and control siRNA versus
TGFB and Meox1 siRNA (left); and genes upregulated in TGF3 and MeoxI siRNA
versus TGFP and control siRNA (right). n, Violin plot showing the normalized
expressionscores of genes upregulated in TGFf and control siRNA versus TGF§
and MeoxI siRNA in PRO-seq that were capturedinthe scRNA-seqdata.
Expression of sham and TAC fibroblast samples is shown. o, Number of MEOX1-
bound genesin MEOX1 ChIP-seq (in TGFf-treated cells) in +2 kb gene body,
+100 kb genebody or +500 kb gene body in genes differentially transcribed in
PRO-seq: upregulated in TGF versus unstimulated (left); downregulated in
TGFpB versus unstimulated (centre left); upregulated in TGF3 and control siRNA
versus TGFB and MeoxI siRNA (centreright); upregulated in TGF3 and Meox1
siRNA versus TGF and control siRNA (right). p, Coverage of MEOX1 ChIP
(TGFpB-treated cells), H3K27ac ChIP-seq (unstimulated and TGFB-treated cells)
and PRO-seq (unstimulated condition, or treatment with TGFf3 and control
siRNA or TGF3 and Meox1siRNA) at the Postnlocus. The Postn peak10/11region
ishighlightedinred. a-f, Numbers above graphs show significant Pvalues.
Dataaremeansts.e.m.
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cardiomyopathy (DCM) or hypertrophic cardiomyopathy (HCM) (GSE141910).
Unpaired, two-tailed ¢-test with Benjamini-Hochberg correction. d, Bulk
RNA-seq data of human MEOXI expression (raw counts) in lung tissue between
controlindividuals and individuals withidiopathic pulmonary fibrosis (IPF)
(GSE134692)*. Unpaired, two-tailed t-test. ¢, d, Numbers above the graphs

Extended DataFig.12| MEOX1is expressed inhuman activated fibroblasts.
a, POSTN (left) and MEOX1 (right) expressionin human adult fibroblast clusters.
yaxes, normalized UMl levels®. b, Track showing scATAC-seq average signal
across fibroblastsin the human fetal heart* in the MEOXI locus. The syntenic
region of peak 9/10 is highlighted inred. ¢, Bulk RNA-seq data of human MEOX1
expression (fragments per kilobase of transcript per million mapped reads, show significant Pvalues.
FPKM) in hearttissuein controlindividuals (Ctrl) and individuals with dilated
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in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|:| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
2N Only common tests should be described solely by name; describe more complex techniques in the Methods section.

X] A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

5 A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
2~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.
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For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  All sequencing were performed using the NextSeq 500 (Illumina, software 4.0.2) and NovaSeq (lllumina, software v1.5).

Data analysis Cellranger (v2.2.0), R (3.5.1), Seurat (v2.3.4), ImageJ (2.0.0), GraphPad Prism 8, Homer (4.11.1).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All sequencing data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession number GSE155882. All processed
data have also been included in the GSE155882 (single-cell expression matrices and bigwig files). Other processes data (gene lists and bed files) are provided in the
Supplementary Tables.

Public database used: reference genome (mm10).
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Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical method was used to predetermine sample size. For the in vivo experiments, we used the following number of animals: Sham
(n=4), TAC (n=6), TAC JQ1 (n=10), TACJQ1 withdrawn (n=14). For tissue fibrosis quantification, we used the following number of animals: TAC
JQ1 (n=4), TACJQ1 withdrawn (n=8). For single cell RNA/ATACseq experiments, we loaded 12,000 non-cardiomyocyte cells from the adult
mouse heart. We used 2 replicates each conditions for PROseq, 3 replicates per condition for MEOX1-HA ChIPseq, and 2 replicates each
condition for H3K27ac ChlPseq. For gene expression analysis by gPCR, the number of samples is indicated as data points on the figures (at
least 3 replicates for each conditions).
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Data exclusions | No data was excluded from the analysis.

Replication We performed all experiments in biological replicates and could observe agreement between the replicates. All experiments were performed
at least twice independently and material was collected and processed independently and by different researchers. The exact number of
replicates, the exact p-value and the statistical test used to obtain it are indicated in the figures and legends.

Randomization  Cellular experiments were done in multi-well plates with randomized choices of the wells for each treatment. For animal experiments,
animals were randomized before treatment.

Blinding All surgeries and echocardiography imaging analyses were blinded with regard to treatment, and animals were decoded only
after all data were analyzed. For quantification of picrosirius red staining, aSMA staining and EdU incorporation, a blinded approach was used,
samples were labeled with an alphanumeric code and the different conditions were decoded only after the data analysis. Quantification of
gene expression by qPCR were performed by applying the same parameters in an unbiased way.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |:| |Z ChlP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data

XXXOXOO s
OO00XOX X

Dual use research of concern

Antibodies

Antibodies used Anti-HA antibody (Abcam #9110)
Anti-H3K27ac (Abcam #ab4729)
Picro Sirius Red stained (Abcam #ab150681)
aSMA (DAKO # M0851)
Donkey anti-mouse IgG 555 antibody (Invitrogen, #A32773)
Hoechst (Thermo Scientific, #33342)
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Each quantity of antibody is specified in the Method sections.

Validation For the anti-HA used for MEOX1-HA ChIPseq, we validated the anti-HA antibody using positive (pHR lentiviral Meox1-HA
overexpression) and negative (overexpression of pHR with no Meox1-HA cassette) and performing Western Blot and IHC.

Anti-HA antibody (Abcam #9110), validated by the company, has been referenced in 764 publications.




Anti-H3K27ac (Abcam #ab4729), validated by the company, has been referenced in 1229 publications.

Picro Sirius Red stained (Abcam #ab150681), validated by the company, has been referenced in 92 publications.

aSMA (DAKO # M0851), validated by the company, has been referenced in 1122 publications.

Donkey anti-mouse 1gG 555 antibody (Invitrogen, #A-32773), validated by the company, has been referenced in 91 publications.
Hoechst (Thermo Scientific, #33342), validated by the company, has been referenced in 651 publications.

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s) HEK293 (ATCC); immortalized cardiac fibroblasts (made in house), human lung fibroblasts (ATCC, #CRL-4058), human liver
fibroblasts (CELL APPLICATIONS INC, #712-05f); human kidney fibroblasts (Cell Biologics, # H-6016).

Authentication Cells lines were acquired from ATCC. For the generation of our immortalized cardiac fibroblasts line, we sorted ZsGreen
positive cells from a Tcf21MCM/+;Rosa26 Ai6/+ adult mouse (all details reported in the Method section). We have
authenticated the cell line performing karyotyping and PCR using species-specific primers.
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Mycoplasma contamination All cell lines tested negative for mycoplasma contamination regularly every 2 weeks

Commonly misidentified lines No commonly misidentified cell lines were used in the study.
(See ICLAC register)

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For the JQl-related experiments: C57BI/6J (The Jackson Laboratory, Stock No: 000664) - Males at the age ranging 10-18 weeks
Wild animals This study did not use wild animals

Field-collected samples  The study did not involve field-collected samples

Ethics oversight All protocols concerning animal use were approved by the Institutional Animal Care and Use Committees at the University of

California San Francisco and conducted in strict accordance with the National Institutes of Health Guide for the Care and Use of
Laboratory Animals.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChlP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE155882

May remain private before publication.

Files in database submission Raw and processed data for: scRNA/ATACseq, bulkRNAseq, PROseq, 4C and ChIPseq

Genome browser session All bigwig files are available in GEO (GSE155882).
(e.g. UCSC)
Methodology
Replicates All transcriptional and epigenomic analysis were done in duplicates or triplicates.
Sequencing depth - BulkRNAseq in cardiomyocytes: High-throughput sequencing was done using a PE75 run on a NextSeq 500 instrument (Illumina) for
9 samples

- scRNAseq in non-cardiomyocytes: 8 samples were pooled and sequenced in one single lane on a NOVAseq (lllumina)

- scCATACseq in non-cardiomyocytes: 8 samples were pooled and sequenced in one single lane on a NOVAseq (lllumina)

- PROseq in cardiac fibroblasts: 8 samples were pooled and sequenced SR75 bp in one single lane on a HiSeq 4000 (Illumina)
- 4C: The 2 relevant samples were pooled with other 6 non-relevant samples using a SE75 run on a NextSeq 500 (lllumina)

- ChIPseq: 6 relevant samples were pooled with other 6 non-relevant samples using a SE75 run on a NextSeq 500 (Illumina)
-ChlPseq: 4 relevant samples were pooled with other 8 non-relevant samples using a SE75 run on a NextSeq 500 (lllumina)
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Antibodies Anti-HA antibody (Abcam #9110); H3k27ac (Abcam #ab4729)

Peak calling parameters  scATACseq: Raw sequencing reads were processed using the Cell Ranger ATAC v1.0 pipeline from 10X Genomics. In brief, reads were
demultiplexed and aligned to the mouse mm10 genome. As a test of sample quality, a minimum of 70% of fragments overlapped
targeted regions as defined by CellRanger. Peaks are then are called on aggregated fragments and then barcodes with fewer
fragments than an automatically determined threshold (usually around 200) within these peaks are discarded. The remaining




Data quality

Software

fragments are counted to generate a peak-by-barcode matrix.

ChIPseq: Peaks were called using GEM14. Read counts per peak were generated with featureCounts15 and normalized to account for
differences in sequencing depth between samples using upper quartile normalization separately for the ChIP and input sample.

scATACseq: Raw sequencing reads were processed using the Cell Ranger ATAC v1.0 pipeline from 10X Genomics. In brief, reads were
demultiplexed and aligned to the mouse mm10 genome. As a test of sample quality, a minimum of 70% of fragments overlapped
targeted regions as defined by CellRanger. Peaks are then are called on aggregated fragments and then barcodes with fewer
fragments than an automatically determined threshold (usually around 200) within these peaks are discarded. The remaining
fragments are counted to generate a peak-by-barcode matrix.

ChlIPseq:

Regions bound by MEOX1 and H3K27ac were determined using empirical Bayes F-tests for a quasi-likelihood negative binomial
generalized log-linear model of the count data as implemented in edgeR. Specifically, we tested for a significant (i.e., non-zero at FDR
< 5%) log2 fold-increase in normalized peak signal for ChIP versus the corresponding input sample. 6 samples (+ inputs) were ran for
MEOX1 ChIP and only peaks present in minimum 2 out of 3 replicates were kept. 4 samples (+ inputs) were ran for H3K27ac ChlP.
Region intersections were found using BEDTools16.

PROseq:

FastQ files resulting from the deep sequencing have been cleaned from low quality reads using Trimmomatic13. Trimmed FastQ files
have been aligned together to the reference genome (mm10) using Bowtie2 (http://bowtie-bio.sourceforge.net/bowtie2/).

SscCATAC: Raw sequencing reads were processed using the Cell Ranger ATAC v1.0 pipeline from 10X Genomics.

ChIPseq: Peaks were called using GEM14. Read counts per peak were generated with featureCounts. Region intersections were
found using BEDTools16.

PROseq: All analysis have been run with Homer (4.11.1).
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