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Abstract The centromere directs chromosome segregation
and genetic inheritance but is not itself heritable in a canoni-
cal, DNA-based manner. In most species, centromeres are
epigenetically defined by the presence of a histone H3 variant
centromere protein A (CENP-A), independent of underlying
DNA sequence. Therefore, centromere inheritance depends
on maintaining the CENP-A nucleosome mark across gener-
ations. Experiments in cycling somatic cells have led to a
model in which centromere identity is maintained by a cell
cycle-coupled CENP-A chromatin assembly pathway.
However, the processes of animal gametogenesis pose unique
challenges to centromere inheritance because of the extended
cell cycle arrest and the massive genome reorganization in the
female and male germline, respectively. Here, we review our
current understanding of germline centromere inheritance and
highlight outstanding questions.
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Introduction

The epigenetic nature of centromere identity

Centromeres direct chromosome segregation and therefore
must be inherited with each chromosome through every cell
cycle. Most eukaryotic models of centromere inheritance
propose that propagation of chromatin-assembled centro-
mere protein A (CENP-A) nucleosomes allows for epige-
netic inheritance of centromere identity, independent of un-
derlying DNA sequence (Allshire and Karpen 2008; Black
and Cleveland 2011). However, centromeres are typically
associated with characteristic DNA sequences. The first
centromere ever isolated came from budding yeast
(S. cerevisiae), where plasmids containing a centromeric
DNA sequence persisted for multiple cell cycles and segre-
gated normally in meiosis (Clarke and Carbon 1980).
Indeed, in budding yeast, a 125 bp DNA sequence is nec-
essary and sufficient for centromere specification
(Fitzgerald-Hayes et al. 1982; Panzeri and Philippsen
1982; Bloom and Carbon 1982; Saunders et al. 1988), an
example of a Bpoint^ centromere (Pluta et al. 1995).
Centromere DNA is highly diverged and is typically com-
posed of repetitive or a mixture of repetitive and non-
repetitive sequences (Locke et al. 2003; Piras et al. 2010;
Shang et al. 2010), termed Bregional^ centromeres.
Regional centromeres in humans, for example, contain up
to 5 Mb of 171-bp-long alpha-satellite repeats (Waye and
Willard 1987). Centromeres can also extend to the entire
chromosome length in the case of holocentromeres, which
have arisen independently multiple times during the evolu-
tion of plants and animals (Mola and Papeschi 2006), for
example, in Caenorhabditis elegans, some protozoans,
some insects, green algae, and certain plants (Guerra et al.
2010; Melters et al. 2013).

* Michael A. Lampson
lampson@sas.upenn.edu

* Ben E. Black
blackbe@mail.med.upenn.edu

1 Department of Biology, University of Pennsylvania,
Philadelphia, PA 19104, USA

2 Department of Biochemistry and Biophysics, University of
Pennsylvania, Philadelphia, PA 19104, USA

3 Graduate Program in Biochemistry and Molecular Biophysics,
University of Pennsylvania, Philadelphia, PA 19104, USA

4 Graduate Program in Cell and Molecular Biology, Perelman School
of Medicine, University of Pennsylvania, Philadelphia, PA 19104,
USA

Chromosoma (2017) 126:595–604
DOI 10.1007/s00412-017-0640-y

mailto:blackbe@mail.med.upenn.edu
mailto:blackbe@mail.med.upenn.edu
http://crossmark.crossref.org/dialog/?doi=10.1007/s00412-017-0640-y&domain=pdf


The first evidence for epigenetic specification of centromeres
came from the analysis of human patient samples, which revealed
the inactivation of one centromere of a dicentric chromosome
(Earnshaw and Migeon 1985) and the formation of
neocentromeres (Choo 1997). Neocentromeres are ectopic cen-
tromeres on complex DNA sequences (i.e., not repetitive DNA)
that have arisen in rare cases when a chromosome fragment is
removed from its natural centromere by chromosome rearrange-
ment, or in even rarer cases when CENP-A nucleosomes migrate
from their original location in repetitive centromeric chromatin
DNA to a new location on the chromosome that does not contain
any DNA repeats (Choo 1997; Depinet et al. 1997; Barry et al.
1999; Scott and Sullivan 2014). Such neocentromeres were dis-
covered in various organisms (Marshall et al. 2008; Guerra et al.
2010; Burrack and Berman 2012; Scott and Sullivan 2014) and
can be inherited in mitosis and meiosis through at least three
generations (Tyler-Smith et al. 1999; Amor et al. 2004). Further,
it does not appear that DNA at neocentromeres must evolve to
become more repetitive in order to maintain centromeres (Barry
et al. 1999). These observations suggest that the typical centro-
mere DNA sequences are neither necessary nor sufficient for
centromere specification and that centromere inheritance is epige-
netic and conferred by the presence of CENP-A nucleosomes. In
fact, targeting to non-centromeric chromatin containing a lac op-
erator array via fusion of the lac repressor protein to CENP-A or
its chaperone HJURP is sufficient for the formation of functional
centromeres in flies and human and can recruit other kinetochore
proteins such as CENP-C and HEC1 (Mendiburo et al. 2011;
Barnhart et al. 2011). Notable exceptions to the requirement for
CENP-A are kinetoplastids that do not possess CENP-A protein
and rely instead on a set of unconserved centromere proteins
(Lowell and Cross 2004; Berriman et al. 2005; Akiyoshi and
Gull 2014) and at least two conserved outer kinetochore compo-
nents, NUF2 and NDC80 (D’Archivio andWickstead 2016), but
it is still unclear how the kinetochore assembly site is determined
in these species (Akiyoshi and Gull 2014). However, taken to-
gether, most studies support the centrality of CENP-A nucleo-
somes in specifying and inheriting the centromere through multi-
ple generations in most organisms.

The challenge of inheriting centromeres
through the germline

Accurate and quantitative inheritance of genetic information is
achieved by replicating DNA and then partitioning it equally into
daughter cells. DNA is a stable molecule, which enables long-
term storage of genetic information without decay. Because cen-
tromeres are specified epigenetically in most species by the pres-
ence of CENP-A nucleosomes, centromere inheritance through

the germline requires the maintenance of these nucleosomes
through gametogenesis. Mechanisms of CENP-A chromatin as-
sembly and propagation are well established in somatic cells and
have been extensively reviewed elsewhere (Erhardt et al. 2008;
Falk and Black 2012; De Rop et al. 2012; Chen and Mellone
2016). In short, existing CENP-A is partitioned equally between
sisters during DNA replication in S-phase and then replenished
in G1, upon exit from mitosis (Schuh et al. 2007; Jansen et al.
2007; Lagana et al. 2010). Both male and female germlines pose
challenges for this inheritance pathway. A common feature of
oocyte development is an arrest phase, which is most dramatic in
mammalswhere prophase I can last formonths (mice) or decades
(humans) without detectable assembly of new CENP-A chroma-
tin (Smoak et al. 2016) (Fig. 1a, b). In spermatogenesis, nearly all
histones are replaced by very small arginine-rich basic proteins
called protamines during the chromatin-to-nucleoprotamine tran-
sition to compact DNA (Fig. 1c) (Gaucher et al. 2010; Rathke
et al. 2014; Bao and Bedford 2016). CENP-A nucleosomes are
maintained through both the prophase I arrest in mammalian
oogenesis and the widespread histone replacement in spermato-
genesis, but the underlying mechanisms remain unclear.

Although CENP-A is essential for defining centromeric
chromatin in most eukaryotes, there are four known insect
lineages that have independently transitioned from
monocentricity to holocentricity (Drinnenberg et al. 2014).
This transition has led to the genomic loss of CENP-A and
CENP-C, while outer kinetochore proteins NDC80 or MIS12
remained (Drinnenberg et al. 2014). These holocentric insects
therefore have a centromere not defined by CENP-A, thus
differing from other eukaryotes studied to date. In
C. elegans, a holocentric nematode, CENP-A is present in
mitotic cell cycles but not during gametogenesis (Monen
et al. 2005), and different mechanisms designate microtubule
attachment sites and coordinate the two-step loss of cohesion
required for faithful segregation of chromosomes during mei-
osis (Nabeshima et al. 2005; Monen et al. 2005; Cabral et al.
2014). However, CENP-A is reloaded onto chromatin where
there is no germline transcription, and CENP-A nucleosomes
are required for mitotic divisions, indicating that although
CENP-A may be dispensable for chromosome segregation
in the germline, CENP-A chromatin is required for somatic
cell cycles (Monen et al. 2005; Gassmann et al. 2012).

Germline CENP-A assembly: deviations from mitotic cells

Several lines of evidence suggest that germline CENP-A
chromatin assembly does not follow the somatic cell mod-
el. In contrast to G1 CENP-A chromatin assembly in mi-
totic cell cycles, biphasic deposition is observed in the
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Fig. 1 Assembly and retention of CENP-A nucleosomes in mammalian
gametogenesis. a Schematic showing mammalian oogenesis: Fetal oogo-
nium cells proliferate to form primary oocytes which enter meiosis I and
are arrested in prophase I prior to birth. These primary oocytes represent
the entire ovarian reserve from which oocytes are ovulated during the
reproductive lifespan of the female. The duration of the prophase I arrest
varies (~months inmice and years in humans).Meiotic resumption occurs
when a primary oocyte enters meiosis II to form the secondary oocyte
which is then ovulated and arrests in metaphase II until fertilization.
CENP-A nucleosomes are assembled prior to prophase I arrest and re-
main at centromeres for this entire process. b Centromere inheritance is
tightly coupled to the cell cycle in cycling somatic cells. CENP-A nucle-
osomes are evenly partitioned between sister centromeres during S-phase,
effectively diluting the amount at each centromere by 50%. In most sys-
tems studied, CENP-A is replenished only once per cell cycle, in a strictly
controlled manner. Oocytes arrest in prophase I for weeks to decades in

mammals, and it is unclear how CENP-A nucleosomes persist at the
centromere during this time. Image shows a mouse oocyte stained for
CENP-A (green) and DNA (blue) at metaphase I. CENP-A loaded prior
to meiosis is maintained even in aged oocytes, indicating that CENP-A
nucleosomes demonstrate an unusual stability in the germline compared
to canonical H3 nucleosomes (Smoak et al. 2016). c Schematic showing
the first wave of spermatogenesis in mammals. Spermatogenic stem cells
(SSCs) undergo proliferation to generate more precursors and primary
spermatocytes that are committed to meiosis. Primary spermatocytes un-
dergo meiosis I and form secondary spermatocytes. These complete mei-
osis II to form haploid round spermatids (rd spd), beginning the haploid
phase of spermatogenesis called spermiogenesis. Histone-to-protamine
exchange initiates ~28 days post birth in mice, and most histones except
CENP-A nucleosomes are replaced by protamines in mature sperm.
Sperm is continually produced by waves of spermatogenesis during the
lifespan of the organism
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male germline, for example, in prophase I and at exit
from MII in Drosophila and during pre-meiotic G2 and
interkinesis in higher plants (Raychaudhuri et al. 2012;
Dunleavy et al. 2012; Schubert et al. 2014) (Fig. 2).
However, similar to somatic cells, nascent CENP-A chromatin
assembly in the germline occurs when CDK activity is expect-
ed to be low, which is known to promote CENP-A assembly in
somatic cells (Silva et al. 2012). Drosophila CENP-A (CID)
nucleosomes are assembled throughout prophase of meiosis I
in oocytes (Raychaudhuri et al. 2012; Dunleavy et al. 2012).
However in mouse oocytes, there is no evidence of a CENP-A
chromatin assembly pathway during prophase I or later in mei-
osis, and nascent CENP-A chromatin assembly likely occurs
only during pre-meiotic G1 (Smoak et al. 2016). Taken togeth-
er, the available evidence suggests that CENP-A chromatin
assembly follows a pattern of a single deposition phase in the
fruit fly and mouse female germline and deposits in a biphasic
pattern in fruit fly male germline and plants. Nascent CENP-A
chromatin assembly still remains to be investigated in the male
germline in mammals. Although the reason behind these dif-
ferences is unclear, it does appear that CENP-A chromatin
assembly has been differentially adapted in the germline, com-
pared to somatic cells, possibly to account for varied challenges
in gametogenesis.

Quantitative inheritance of CENP-A nucleosomes is an-
other challenge for the germline, so that centromere chro-
matin is maintained at consistent levels across generations.
Assembly of CENP-A chromatin could be template depen-
dent, where existing CENP-A nucleosomes dictate the de-
position of an equal number of new CENP-A nucleosomes.
Alternatively, a fixed number of CENP-A nucleosomes
could assemble independent of the initial template size.
To distinguish between these models in the Drosophila
male germline, cid mutant flies were rescued with a Cid-
GFP transgene, and Cid-GFP protein was reduced to ~33%
by RNAi in sperm using a germline-specific promoter
(Raychaudhuri et al. 2012). These flies were crossed to
Cid-GFP females to restore cid expression in the progeny.
Cid-GFP levels at centromeres were reduced to ~72% in

the embryos, wing imaginal discs, and mature sperm in the
progeny (Raychaudhuri et al. 2012). This result is consis-
tent with template-dependent centromere inheritance given
that only one parent was reduced. This model also makes
two additional predictions: (1) The Y chromosome should
remain at 33%, similar to the male parent, and (2) pater-
nally inherited centromeres should have less Cid-GFP than
maternally inherited centromeres. However, analysis of
spermatocytes showed reduction to 75% on the Y, similar
to other chromosomes, and did not reveal differences be-
tween homologous autosomes to any greater extent than in
controls (Raychaudhuri et al. 2012). Overall, there is some
evidence for a template-dependent model, but mechanisms
of quantitative centromere inheritance remain unclear and
have not been investigated in mammals where there are
differences in meiotic CENP-A chromatin assembly com-
pared to Drosophila.

Assembly of CENP-A chromatin requires specific chap-
erones (HJURP in human, Scm3 in budding yeast, and
CAL1 in Drosophila) to differentiate this low abundance
variant from bulk histone H3 (Mizuguchi et al. 2007;
Stoler et al. 2007; Camahort et al. 2007; Foltz et al. 2009;
Dunleavy et al. 2012). Contribution of such chaperones to
germline transmission of CENP-A has not been studied in
vertebrates, but Drosophila CAL1 is required for CENP-A
assembly both in spermatocytes and oocytes (Raychaudhuri
et al. 2012; Dunleavy et al. 2012; Kwenda et al. 2016).
Thus, the requirement for a chaperone is similar in somatic
and germline cell cycles.

Centromere inheritance: spermatogenesis

Retention of CENP-A through spermatogenesis, while oth-
er histones are almost completely removed (Fig. 1c),
played an important role historically. CENP-A was initially
identified, along with CENP-B and CENP-C, using the
sera of patients with CREST syndrome (Earnshaw and
Rothfield 1985; Valdivia and Brinkley 1985; Earnshaw
2015). The first evidence that CENP-A was a specialized

CENP-A assembly in germline

S G2 Pro I Meta I Ana I Telo IG1
Inter-

kinesis Meiosis II Exit

sisoieMsnoisivid citoiem-erP

Rye

Fruit fly

Mice

Fig. 2 Timing of CENP-A deposition in the germline in different species.
Schematic shows the stages of germline divisions with CENP-A loading
in different organisms indicated with colored bars. In the monocotyledon-
ous plant, rye, CENP-A shows biphasic centromere chromatin assembly
in G2 and interkinesis (Schubert et al. 2014). In fruit flies, CENP-A (CID)
gradually assembles at centromeres in prophase I (Raychaudhuri et al.

2012; Dunleavy et al. 2012), and males have a second loading phase
similar to plants after exit frommeiosis II. In mouse, CENP-A centromere
chromatin assembly in the female germline likely occurs pre-meiotically,
and the same population of CENP-A lasts through both meiotic divisions
(Smoak et al. 2016)
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histone was its co-purification with core histones H3 and
H4 (Palmer et al. 1987). The subsequent purification of
CENP-A protein to homogeneity took advantage of the
observation that it survives the chromatin-to-nucleo
protamine transition in bull sperm, despite the removal of
nearly all other histones (Fig. 3b, c) (Palmer et al. 1990).
Some canonical nucleosomes survive the transition and re-
main chromatin bound, but the function of these remaining
histones at locations throughout the genome and whether
their retention is part of a regulatory mechanism in early
embryogenesis, or simply random evasion of the protamine
exchange machinery, is still debated (Hammoud et al.
2009; Brykczynska et al. 2010; Meyer-Ficca et al. 2013;

Erkek et al. 2013; van de Werken et al. 2014; Samans
et al. 2014). Immunoblotting of acid-soluble proteins
showed that CENP-A levels in bull sperm nuclei (Palmer
et al. 1990) were comparable to calf thymus nuclei or
human tissue culture nuclei relative to DNA, suggesting
that CENP-A is completely retained through spermiogene-
sis (Fig. 3d). The high concentration of CENP-A nucleo-
somes in mature sperm relative to other histones facilitated
CENP-A purification and partial sequencing through frag-
mentation and degradation. This analysis showed homolo-
gy to histone H3, leading to the first proposal that it was a
histone H3 variant (Fig. 3a; Palmer et al. 1991). Indeed, its
subsequent cloning revealed that CENP-A contains a

a b

H= Human tissue culture cell nuclei
T= Calf thymus nuclei
S= Bull sperm nuclei
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Fig. 3 CENP-A retention in sperm allowed for purification of CENP-A
and its identification as a histone. a Sequence alignment showing homol-
ogy of 27 amino acid residues of CENP-A and H3. The sequence of these
27 amino acids was obtained using a gas-phase sequenator to sequence
peptides derived from digestion of CENP-A purified from bull sperm
(Palmer et al. 1991). These peptides showed > 50% sequence identity
to bovine H3, most strikingly at the C-terminus across loop 2 and the α3
helix as shown. Identical residues are indicated by double dots, conser-
vative substitutions by single dots. b Immunofluorescence visualization
of bull sperm nuclei using anticentromere serum revealed punctate foci of
CENP-A (Palmer et al. 1990). c During the transition from round sper-
matid to elongating/condensing spermatids, there is a drastic

reorganization of the sperm genome. Nearly all canonical histones are
replaced by protamines to form toroidal DNA structures, except for cen-
tromeric CENP-A-bound DNA (adapted from Schagdarsurengin et al.
2012). d The original immunoblot analysis using anti-centromere anti-
bodies (ACA) isolated from patients with CREST syndrome compared
nuclei isolated from human tissues culture cells, calf thymus cells, and
bull sperm (Palmer et al. 1990). Nuclei from mature bull sperm contain
similar amounts of CENP-A as other cell types. This result confirms that
the foci shown in panel B are centromeres and suggests that CENP-A is
quantitatively retained through spermatogenesis, unlike other histones.
CENP-B was not detected in either whole calf thymus or bull sperm with
this serum
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histone-fold domain most similar to histone H3 (Sullivan
et al. 1994).

There are still several unanswered questions which stem
from these early studies on CENP-A retention in the male
germline. How does sperm deal with both protamine and
CENP-A nucleosome bound chromatin? Protamines allow
chromatin to adopt a flatter, toroidal shape as opposed to
nucleosome-wrapped chromatin, so it is likely that chromatin
architecture is different at the centromere than at other chro-
matin loci in mature sperm. After fertilization, sperm chroma-
tin decondenses, protamines are replaced by histones, and
other centromere proteins are imported into the pronucleus
from the ooplasm (McLay and Clarke 2003). In round sper-
matids, centromeric and peri-centromeric chromatin cluster
together to form the chromocenter (Zalensky et al. 1993;
Zalensky et al. 1995; Gurevitch et al. 2001). Whether specific
chromosome arrangements are functionally necessary in
sperm is unclear. These early studies also emphasize the key
question of how CENP-A nucleosomes are preferentially
retained in sperm chromatin while most other canonical his-
tones are lost, for which we put forth a hypothesis later in this
review.

Centromere inheritance: oogenesis

Mammalian oogenesis presents a challenge for centromere
inheritance in the female germline because of the extended
prophase I arrest, which can last for a period of a few weeks
to decades depending on species. In mouse, CENP-A is stably
retained at centromeres during the arrest, with no detectable
new loading for the reproductive lifespan of the animal. Mice
with an oocyte-specific conditional knockout of CENP-A ear-
ly in the prophase I arrest are fully fertile with wild-type levels
of CENP-A at oocyte centromeres. These results indicate that
in the absence of new CENP-A synthesis, centromeric chro-
matin assembled prior to meiotic entry is sufficient for centro-
mere function more than 1 year later and transmission to the
next generation (Smoak et al. 2016, Fig. 4 Model 3). This
stability of CENP-A nucleosomes does not extend to other
histones, as deposition of histone H3.3 during prophase I is
required for normal chromatin structure and oocyte survival in
mouse (Nashun et al. 2015; Tang et al. 2015). Mechanisms of
centromere inheritance vary, however, in other organisms. For
example, Drosophila oocytes have a meiotic prophase I load-
ing pathway (Dunleavy et al. 2012; Kwenda et al. 2016), and
in holocentric C. elegans, centromere inheritance through the
female germline is completely CENP-A independent (Fig. 4
Model 1) (Monen et al. 2005; Gassmann et al. 2012).

Models for CENP-A stability in the germline

Mechanisms underlying the remarkable retention of CENP-A
through both spermatogenesis and oogenesis are unknown.

We propose that the intrinsic structural rigidity of CENP-A
nucleosomes maintains them at centromeres through gameto-
genesis. Solution biophysical and high-resolution structural
analyses of CENP-A revealed intrinsic differences in the in-
ternal dynamics of the (CENP-A/H4)2 tetramer compared to
the (H3/H4)2 tetramer (Black et al. 2004; Sekulic et al. 2010).
The interface of CENP-Awith its partner histone, H4, contains
hydrophobic stitches that lend conformational rigidity to
CENP-A nucleosomes (Sekulic et al. 2010). This rigidity
may create a stable nucleosome that survives both prophase
I arrest and histone replacement. Indeed, mutation of the six
amino acid residues that generate the stitches, to the counter-
part residues found in conventional histone H3, greatly re-
duces its accumulation at centromeres in somatic cells while
not affecting interactions with HJURP (Bassett et al. 2012).
The importance of the specific hydrophobic residues at the

Time
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during meiosis

Intrinsic rigidity/CCAN components 
stably retain CENP-A 

nucleosomes at centromeres

Models of centromere inheritance

Time

CENP-A is lost 
during meiosis

New CENP-A is 
assembled 

1.

2.

3.

CENP-A assembled prior to meiosis

Newly synthesised CENP-A

Old and new CENP-A

Fig. 4 Models for centromere inheritance through the germline. Three
models have been proposed to explain centromere inheritance in the
female germline. Model 1 is that centromere inheritance is CENP-A
independent, as shown in C. elegans (Monen et al. 2005). Model 2 in-
vokes nascent CENP-A chromatin assembly to maintain centromeres
(Dunleavy et al. 2012). Model 3 states that centromere inheritance de-
pends on the intrinsic rigidity of CENP-A nucleosomes and interactions
with other CCAN components, whichmaintains these nucleosomes at the
centromere throughout oogenesis (Sekulic et al. 2010; Falk et al. 2015;
Smoak et al. 2016)
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CENP-A/H4 or H3/H4 interface is also borne out by studies
on the testis-specific histone H3.5, which forms an unstable
nucleosome attributable to a the presence of a Leu103 residue
instead of the phenylalanine usually present in canonical H3
or CENP-A at the corresponding contact site with H4
(Tachiwana et al. 2010; Schenk et al. 2011; Urahama et al.
2016).

Non-histone centromere proteins also contribute extrinsi-
cally to CENP-A retention. CENP-A nucleosomes recruit the
constitutive centromere-associated network (CCAN), a col-
lection of ~16 proteins that localize to the centromere through-
out the cell cycle and direct kinetochore assembly during cell
division (Cheeseman and Desai 2008; Perpelescu and
Fukagawa 2011; Hori et al. 2012). Two of these proteins,
CENP-C and CENP-N, contact CENP-A nucleosomes direct-
ly (Carroll et al. 2009; Guse et al. 2011; Kato et al. 2013), and
CENP-C can reshape CENP-A nucleosomes and plays an
important role in retaining CENP-A at the centromere (Falk
et al. 2015; Falk et al. 2016). Indeed, a single point mutation of
the nucleosome interaction surface of CENP-C retains binding
to CENP-A but eliminates structural stability and hinders its
ability to retain CENP-A nucleosomes at the centromere (Guo
et al. 2017). CENP-C and CENP-S have also been shown to
be important for resisting unfolding of centromeric chromatin
in low ionic strength solutions (Vargiu et al. 2017). In addi-
tion, flies with impaired CENP-C function have reduced
CENP-A at centromeres in spermatids, indicating an extrinsic
mechanism for maintaining CENP-A during early meiosis in
males (Kwenda et al. 2016). However, since CENP-C protein
was not detected inDrosophila or Xenopus sperm (Milks et al.
2009; Raychaudhuri et al. 2012), the mechanism of retaining
CENP-A nucleosomes through the genome-wide histone-
protamine exchange in sperm is still unclear. CENP-N cross-
links CENP-A to nucleosomal DNA and also contributes
strongly to CENP-A stability at centromeres (Guo et al.
2017), and it is not yet clear whether or not it is present on
sperm chromatin.

In addition, there are meiosis-specific proteins that ensure
that sister kinetochores are co-oriented in meiosis I. In mice
for example, the protein MEIKIN is required for co-
orientation and present on chromosomes through the prophase
arrest in oocytes (Kim et al. 2015), but its contribution to
stabilizing CENP-A needs further investigation.

Conclusion

Much progress has been made towards understanding how
centromere identity is maintained and transmitted through so-
matic cell cycles. However, many gaps exist in our under-
standing of whether and how these processes are different in
the germline. The role of CENP-A nucleosomes in maintain-
ing centromere identity is further demonstrated by the

induction of haploids in plants by altered centromeric function
(Ravi et al. 2011). In a cross between a wild-type plant and an
Arabidopsis cenh3 mutant complemented by a chimeric
CENP-ACENH3 transgene, chromosomes from the mutant par-
ent are lost in the progeny (Ravi and Chan 2010; Ravi et al.
2014). Loss of CENP-ACENH3 also precedes chromosome
elimination in interspecific barley crosses, supporting the idea
that variation in centromeric histones results in interspecific
incompatibility and haploid induction (Sanei et al. 2011).

Inherent structural features of CENP-A nucleosomes may
contribute to their retention in both the male and female
germlines. Thus, there may exist a simple unified mechanism
for centromere inheritance. Going forward, it will be impor-
tant to investigate the significance of the extraordinary stabil-
ity exhibited by CENP-A nucleosomes in the germline as loss
of these nucleosomes in aged oocytes where CENP-A stability
is somehow compromised may cause aneuploidy. A parallel
situation might be where the loss of cohesins during the ex-
tended prophase I arrest in mammalian oocytes can lead to
age-associated aneuploidy (Chiang et al. 2010; Lister et al.
2010; Chiang et al. 2011; Chiang et al. 2012), and the rate of
cohesin loss is almost certainly influenced by the genetics of
the individual. In addition, the amount of CENP-A at a cen-
tromere can influence which chromosome from a homologous
pair is destined for the egg versus the polar body during the
asymmetric division inMI (Chmátal et al. 2014; Iwata-Otsubo
et al. 2017), and it is not yet clear how CENP-A retention (or
lack of it) could influence the ability of a chromosome to
Bdrive^ in female meiosis. Taken together, the implications
for future centromere studies in the germline are broad, with
their impact to be felt in areas as diverse as human reproduc-
tive biology, molecular mechanisms of epigenetic processes,
and eukaryotic evolution.
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